2026 Spring High School Research Program

Project Topic

Wearable Robotics for Assistive Healthcare: Designing Textile-Based Haptic Devices for Diverse Patient Populations

Background

Wearable haptic technologies use vibrations, pressures, or motions to provide sensory feedback to the human body. By integrating **fiber-shaped actuators** into textiles, students can design soft, lightweight, and comfortable devices for real-world applications. Potential user groups include:

- People with diabetes who experience foot insensitivity
- Blind or deaf individuals who rely on navigation aids
- General human-computer interaction users (VR/AR, gaming, training tools)

Students will investigate:

- 1. Target user group and needs.
- 2. Placement of the wearable device on the body.
- 3. Type of haptic signal (motion types, force level, frequency).
- 4. Control methods and test strategies.

Project Description

This program introduces high school students to the fundamentals of **wearable technology**, **human-centered design**, **and soft robotics**. Over 4 weeks, students will learn the basics of textiles, and how to design and test wearable haptic devices, combining creativity, engineering, and problem-solving. Students will engage in a **capstone project**: conceptualizing a wearable haptic device designed for a chosen user group.

Prerequisites

- **Grade Level:** 10th grade and above.
- **Interest:** Curiosity about engineering, textiles, robotics, or assistive technologies.
- **Skills:** No prior experience required, but basic STEM knowledge helpful.
- **Technology:** Access to a computer.

Project Outcomes

By the end of the program, students will be able to:

- 1. **Understand Wearable Robotics Basics**: Explore the principles of haptic feedback and fiber-shaped actuators.
- 2. **Identify User Needs**: Analyze the challenges faced by amputees, people with diabetes, or sensory-impaired individuals.
- 3. **Design Wearable Prototypes**: Choose wearable locations and haptic signal types.
- 4. **Test Methods**: Develop methods to evaluate device effectiveness (comfort, signal clarity, user response).
- 5. **Communicate Ideas**: Present research in written and oral forms, including a final capstone showcase.

Tentative Schedule (4 Weeks)

Week 1: Introduction to Wearable Haptics & Fiber Actuators

- Introduction of textile engineering and technologies
- Overview of wearable robotics and assistive technologies.
- Literature review: Case studies (prosthetics, VR gloves, navigation belts).

Week 2: User-Centered Design

- Identify user groups (amputees, diabetic patients, blind/deaf navigators).
- Define needs and challenges.
- Brainstorm wearable placement and functions.

Week 3: Haptic Signals & Control

- Types of devices: Motion, force, frequency
- Design testing methods (signal detection, comfort evaluation).

Week 4: Project Refinement and Showcase

- Peer feedback and iteration.
- Refine based on peer feedback
- Present capstone wearable haptic device concept.

• Peer review and final reflections.

Deliverables

- **Research Report**: User needs analysis, design process, technology description, and testing protocols.
- Presentation: A group showcase summarizing the design, testing, and potential impact.

Research Workshop: Mon. & Wed. 7-8 PM EST